SAFE AI FOR AUTOMATED DRIVING SYSTEMS

Jelena Frtunikj, Thomas Stauner 25.11.2019

AI AND ML TERMS AND DEFINITIONS

ARTIFICIAL NEURAL NETWORKS

- Analysis is primarily by **matrix multiplications**.

- Weights have to be "learned", they are not predefined:
 - Default values for i₀, i₁, o training data
 - Minimization of the error across all values back propagation
- The first models of artificial neural networks were described as long ago as the 1940s, major break-through in the last 5 years.

DEEP LEARNING NEURONAL NETWORKS WITH MANY HIERARCHICAL LAYERS

Source: Geoff Hinton et al. (2015) Deep Learning NIPS'2015 Tutorial

Idea of the 1980th, current success due to

- new **algorithms** for training of networks,
- availability of huge amount of data as training sets (e.g. image databases), and
- high performance, parallel
 hardware accelerators
 (GPUs, TPUs).

TYPICAL METHODS OF MACHINE LEARNING

Supervised learning

- Learning from associations of data
- Classification: Distinction of discrete classes/types
- Regression: Forecasting of continuous functions

- Unsupervised learning

Example: Image segmentation

- Reinforcement learning

Example: Lane change maneuver

AUTOMATED DRIVING: FROM HANDS-ON TO MAN-OFF

ARTIFICIAL INTELLIGENCE IS THE KEY TO AUTOMATED DRIVING

SAFETY IS CRUCIAL FOR SUCCESS OF AUTONOMOUS DRIVING

– Shai Shalev-Shwartz, CTO MobilEye: "Safety and Scalability contain the risk of 'Winter of autonomous vehicles'." – similar to the "Winter of Al".¹

- Classic safety standards are based of a "4 plus 1" principle:²

- 1. Define Safety requirements
- 2. Decompose safety requirements
- 3. Provide that the software satisfies the safety requirements
- 4. Identify and mitigate hazards from the software
- "The confidence established in addressing the software safety principles shall be commensurate to the contribution of the software to system risk."
- Additionally, process quality is required

- Application to Machine Learning based algorithms:
 - Divide & conquer approach is not possible or not sensible
 - What would MCDC coverage mean for a DNN?
- Orthogonal problem: tool qualification of ML frameworks.

1 Shai Shalev-Schwartz et al.: On a Formal Model of Safe and Scalable Self-driving Cars, 2017. 2 The Safety of Autonomous Systems Working Group: Safety-Related Challenges for Autonomous Systems, 2018.

SOLUTION CLASSES: REFERENCE INFORMATION AVAILABLE

- Class 1: A formal reference exists against which correctness of the ML output can be established.

Example: Driving strategy Formal reference: environment model data Correctness criterion: e.g. keep distance

SOLUTION CLASSES: NO REFERENCE AVAILABLE

- Class 2: No formal reference available / input inherently unstructured

- Means to guarantee reliability of ML solution itself are required
 - Redundancy of independent channels, to reduce required reliability of each individual channel
 - Exhaustive / statistically relevant testing
 - Process quality
 - Further measures see following example

Example: sensor fusion, scene understanding. Formal reference: -Correctness criterion: correct detection

DEMO VIDEO: DEEP LEARNING BASED 3D OBJECT DETECTION

<u>File</u> Panels <u>H</u> elp		
💾 Interact 🕸 Move Camera 🛄 Select 🚸 Focus Camera 📼 Measure 💉 2	2D Pose Estimate 🛛 🖌 2D Nav Goal 🛛 💡 Publish Point 🛛 🖶 😑 🔹	
Displays		×
 Global Options Fixed Frame 	eno vehicle reac axis	
Background Color	48; 48; 48	
Frame Rate	30	
Default Light	V	
✓ Fixed Frame	ок	
► ♦ Grid		
✓		
Add Duplicate	Remove Rename	
🕫 Camera		
POS Time: 1556284447.19 POS Elanced: 4231.37 Wall Tim	ne: 1556284447.22 Wall Flansed: 4231.29	
Wall Hill	Wait Lipsed, Hesties	Experimentat

24 fps

SAFETY ALONG THE ENTIRE DEEP LEARNING DEVELOPMENT CHAIN

EXEMPLARY SAFETY ARTIFACTS GENERATED DURING THE DNN DEVELOPMENT CHAIN

Definition	Data Set Specification, Selection, Preparation	Development & Evaluation	Deployment & Monitoring
Dataset Specification	Refined Dataset Specification	DNN Architecture	Detecting unseen situations
Labeling Specification	Refined Labeling Specification	Performance and Safety KPI Report	Performance and Safety KPI Monitoring
KPI Specification	Labeled Dataset	Data Set and Model Baseline	
	Dataset KPI Report	Software Code Baseline	
	Scripting tools		

SUMMARY & FUTURE WORK

- Deploying safe ML algorithm (incl. DNN) require mix of various safety measures along the whole development chain
- Further research is required to understand the safety insufficiencies of ML and identify counter-measures
 - ML algorithms should not be considered as black boxes, but their intrinsic properties should be used
 - Establish new methods and measures
- Extend safety standards to cover ML aspects

https://www.press.bmwgroup.com/global/article/ attachment/T0298103EN/434404

THANKYOU FOR YOUR ATTENTION ANY QUESTIONS?

3

Jelena Frtunikj, Thomas Stauner

