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AI AND ML TERMS AND DEFINITIONS
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ARTIFICIAL NEURAL NETWORKS
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− Analysis is primarily by matrix multiplications.

− Weights have to be "learned", they are not pre-

defined:

▪ Default values for i0, i1, o – training data

▪ Minimization of the error across all values – back 

propagation

− The first models of artificial neural networks were 
described as long ago as the 1940s, major break-

through in the last 5 years.
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DEEP LEARNING
NEURONAL NETWORKS WITH MANY HIERARCHICAL LAYERS
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Idea of the 1980th, current success due to

− new algorithms for training of networks,

− availability of huge amount of data as training 

sets (e.g. image databases), and

− high performance, parallel 
hardware accelerators 

(GPUs, TPUs).

„What is this?“

Source: Geoff Hinton et al. (2015) Deep Learning NIPS‘2015 Tutorial

„A car!“
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Example: Image segmentation

TYPICAL METHODS OF MACHINE LEARNING
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Supervised learning

− Learning from associations of data

− Classification: Distinction of 

discrete classes/types

− Regression: Forecasting of 

continuous functions

− Unsupervised learning − Reinforcement learning
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Example: Lane change maneuver

Focus in this talk: supervised deep learning 
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AUTOMATED DRIVING: FROM HANDS-ON TO MAN-OFF
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Machine Learning

ARTIFICIAL INTELLIGENCE IS THE KEY TO AUTOMATED DRIVING
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SAFETY IS CRUCIAL FOR SUCCESS OF AUTONOMOUS DRIVING

− Shai Shalev-Shwartz, CTO MobilEye: “Safety and Scalability contain the risk of ‘Winter of autonomous vehicles’.” – similar to 

the “Winter of AI”.¹

− Classic safety standards are based of a „4 plus 1“ principle:²

1. Define Safety requirements

2. Decompose safety requirements

3. Provide that the software satisfies the safety requirements

4. Identify and mitigate hazards from the software

− “The confidence established in addressing the software safety 

principles shall be commensurate to the contribution of the software 

to system risk.”

− Additionally, process quality is required
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1 Shai Shalev-Schwartz et al.: On a Formal Model of Safe and Scalable Self-driving Cars, 2017. 

2 The Safety of Autonomous Systems Working Group: Safety-Related Challenges for Autonomous Systems, 2018.

− Application to Machine Learning based algorithms: 

− Divide & conquer approach is not possible or not 

sensible

− What would MCDC coverage mean for a DNN?

− Orthogonal problem: tool qualification of ML 

frameworks.
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SOLUTION CLASSES: REFERENCE INFORMATION AVAILABLE

− Class 1: A formal reference exists against which correctness of the ML output can be established.
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runtime verification

ML algorithm

Example: Driving strategy

Formal reference: environment model data

Correctness criterion: e.g. keep distance
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SOLUTION CLASSES: NO REFERENCE AVAILABLE

− Class 2: No formal reference available / input inherently unstructured

− Means to guarantee reliability of ML solution itself are required

− Redundancy of independent channels, to reduce required 

reliability of each individual channel

− Exhaustive / statistically relevant testing

− Process quality 

− Further measures see following example
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consolidation

ML algorithm 1

Example: sensor fusion, scene understanding.

Formal reference: -

Correctness criterion: correct detection

ML algorithm n…
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DEMO VIDEO: DEEP LEARNING BASED 3D OBJECT DETECTION
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SAFETY ALONG THE ENTIRE DEEP LEARNING DEVELOPMENT CHAIN
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EXEMPLARY SAFETY ARTIFACTS GENERATED DURING THE DNN 
DEVELOPMENT CHAIN
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SUMMARY & FUTURE WORK

▪ Deploying safe ML algorithm (incl. DNN) require mix of various safety measures along the whole development chain

▪ Further research is required to understand the safety insufficiencies of ML and identify counter-measures

▪ ML algorithms should not be considered as black boxes, but their intrinsic properties should be used 

▪ Establish new methods and measures

▪ Extend safety standards to cover ML aspects
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https://www.press.bmwgroup.com/global/article/
attachment/T0298103EN/434404 
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THANK YOU FOR YOUR ATTENTION.
ANY QUESTIONS?

Jelena Frtunikj, Thomas Stauner


